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Exercise 1.4.5

Consider a one-dimensional rod 0 < z < L of known length and known constant thermal
properties without sources. Suppose that the temperature is an unknown constant T at x = L.
Determine T if we know (in the steady state) both the temperature and the heat flow at z = 0.

Solution

The governing equation for the temperature in a one-dimensional rod with constant physical
properties and no heat source is the heat equation.

The heat flux ¢ is defined as the rate of thermal energy flowing per unit area. According to
Fourier’s law of conduction, it is proportional to the temperature gradient.
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where F' is a known constant. The temperature at x = 0 is
u(0,t) = T, (2)

where T is a known constant. Equations (1) and (2) are the boundary conditions for the PDE. In
the steady state the temperature does not change in time, so du/Jt vanishes. w is only a function
of = now.
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The general solution to this ODE is obtained by integrating both sides with respect to x twice.
After the first integration, we get
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Apply equation (1) to determine C.
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So we have
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Integrate both sides with respect to x once more.
F
Apply equation (2) to determine Co.
’LL(O) = 02 = Tg
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As a result, the steady-state temperature is

F

The unknown temperature at x = L can now be found.
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Therefore,
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where Tp is the temperature at x = 0 and F is the heat flow at z = 0.
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